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The Electronic Structure of Periodic Protein Models
I. CNDO/2 and MINDO/2 Energy Band Structures
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The energy band structures of a two-dimensional polyformamide network have been calculated
with the aid of the CNDO/2 and MINDO;,2 crystal orbital method in the first neighbour’s interactions
approximation. For comparison also one-dimensional polyformamide chains have been computed
with the same methods. The features of the obtained band structures are discussed.

Es wurden die Energiebandenstrukturen eines zweidimensionalen Polyformamid-Netzwerkes in
einer Niherung, die die Wechselwirkung der ersten Nachbarn beriicksichtigt, mit Hilfe der CNDO/2
und MINDOQ/2 Kristallorbital-Methoden berechnet. Zum Vergleich wurden auch eindimensionale
Polyformamid-Ketten unter Verwendung derselben Methoden berechnet. Die Eigenschaften der
erhaltenen Bandenstrukturen werden diskutiert.

Calcul de la structure des bandes d’énergie d’un réseau bidimensionnel de polyformamide a I'aide
des méthodes d’orbitales cristallines CNDO/2 et MINDO/2 dans Papproximation d’interaction des
premiers voisins. A titre de comparaison les chaines unidimensionnelles de polyformamide ont été
calculées avec les mémes méthodes. Discussion des caractéristiques des structures de bande obtenues.

Introduction

The electronic structure of proteins is of great importance from obvious
reasons. The first approximate Hiickel calculation of the = electronic band
structure of a H—N—C=0..-H—N—C=0--- infinite chain is due to Evans and
Gergely [1] back in 1949, who have applied this model to describe the 7 electrons
in proteins following the suggestions of Szent-Gyorgyi [2], Coulson [3] and
Laki [4]. By extrapolating from the semiempirical SCF LCAO MO (PPP) energy
levels of a monopeptide, dipeptide and tripeptide, respectively, Suard, Berthier,
and Pullman [5] have obtained an approximate band structure of the infinite
chain. A similar calculation has been performed by Yomosa [6]. The first proper
treatment of the infinite 7 electron crystal orbitals in the tight binding approxi-
mation is due to one of the authors [7], followed by a similar treatment of Suard-
Sender [8]. In this paper there is also a calculation of the = electronic structure of
an infinite —NCO—NCO— chain.

On the other hand Brillouin [9] has proposed such a periodic model for
proteins in which the NH—CO—CH, group of a protein forms the elementary
cell. Introducing further side chain groups we obtain the

—(|:H—NH—CO—|CH—NH—CO—(|3H—NH7CO— “e

R, R, R,
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Fig. 1. The two-dimensional polyformamide network. The unit cell is indicated by a quadrangle

chain of the proteins, where the R,, R, and R; etc. amino acid residues may play
the role of impurities [9]. Following these ideas Fujita and Imamura [10] have
performed an CNDO/2 crystal orbital (CO) calculation for the main chain of
polyglycine. Most recently a similar calculation has been performed by Beveridge
et al. for polyglycine in the INDO and MINDO/2 CO approximations [11].

It seems obvious to try to take into account simultaneously the interactions
through the hydrogen bonds and along the main chain of polypeptides. Such a
calculation requires the treatment of a polypeptide as a two-dimensional system.
If we want to treat polyglycine as a two-dimensional periodic system from simple
geometrical considerations it is clear that four glycine molecules form the elemen-
tary cell. The same difficulty arises in the case of other homopolypeptides. There-
fore as a first step of this series of investigations on periodic protein models we
have investigated as a very simple model system a two-dimensional formamide
network in the CNDQ/2 and MINDQO/2 approximation. In this case as we can
see from Fig. 1 a single formamide molecule forms the unit cell.

Method

It was shown [12] that in the case of a two-dimensional periodic system to
obtain the band structure we have to solve the matrix eigenvalue equation

F(ky, ky) ei(ky, ky) = ek, ko) ¢k, ko) (1)
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for different components k, and k, of the crystal momentum k. Here if we introduce
first neighbour’s interactions only?,

Flk,, k) = F(0,0) + F(+1, 0) ™91 1 F(—1, 0)e %101
FFQO, + 1+ FO, ~1em, @
F(=1,00=F(+1,00, F(0, —1)=F(0, +1)v

where q,, a, are elementary translations along the main chain and the hydrogen
bonds, respectively. The matrix F(0,0) belongs to the reference cell and the
matrices F(+1,0), F(—1,0), F(O, +1) and F(0, —1) contain the interactions
between the reference cell and its four different first neighbours.

The CNDO;y2 form of the method has been described elsewhere [13]. In the
MINDOQO;/2 version of the method

F,,0,00=U,,+3%p, ,0,0) {uplppy
+ Yy (0,0) [Kuplvv) — 3<pv|pv)]

vFpu
(ve A) 3

Z [PB (0, 0) — zg] VA,B(O: 0)+ ; [rs,5(0, 0) — zg] [VA,B("'F 1,0)

B#A
‘H’A,B(‘la 0) + 74,800, +1)+VA,B(Oa -], (ue€A)
F,,(0,0)=p, ,(0,0) [3<uvipvy — 5 unlvvd]  (u#v, pveA), (4)
Fu,v(07 0) = ‘QA,B(Iu + Iv) Su,v(oa O) - %pu,v(oﬁ 0) ’))A,B(()’ 0)

5
(u*v,ueA,veB,B+A) ®)

and finally

Fu,v(qu qZ) = QA,B(Iu + Iv) Su,v(ql > q2) - %pu,v(qla 92) ’J)A,B(ql’ qZ) >

(ueA, veB, g, =41 and ¢, =0, or g, =0 and ¢, = £1). ©
For the one-center core integrals U, , and the valence state ionization potentials
appropriate values are given by Dewar et al. [15]. For all the one-center two
electron integrals occurring in (3) and (4) the usual Slater-Condon parameters
have been used [16]. The Coulomb integrals y, (g, q,) were computed with the
aid of the Ohno-Klopman expression [17]. Finally

pAA 0 0) Z pu u(O 0) (7)

HeA

+ + e
a1a2 mjay +njax W

pu,v(qla QZ) = (27t)2 jl j Z ei(k1q1a1+k2q2a2) (8)

wjay —wlaz i=1

etk ko) kg ky) dkydky, (g, =0,+1,¢9,=0,41).

The expressions used for the one-dimensional polyformamide systems, can be
derived in a trivial way from the formalisms shown here.

! Tt seems probable that in more accurate calculations at least second neighbour’s interactions
should be taken into account. Such investigations are in progress.
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Table 1. The CNDO/2 and MINDO/2 band structures of an one-dimensional

CNDO/2
No. of band Eyo and type of level Eninkyas) Epax(koas) OE
Ro...u-n=2.66 A
1 13.310 (o) 13.599 (0) 13.654 () 0.055
2 11.890 (o) 11.782 (x) 12.425 (0) 0.643
3 8.555 (o) 8.274 (0) 9.414 (n) 1.140
4 4.274 () 4.486 (0) 4.529 (m) 0.043
5 1.224 (o) 1.260 (z) 1.591 (0) 0.331
6 —14.023 (n) —13.933 () —13.743 (0) 0.190
7 —14.819 (0) —14.714 (m) —14.104 (0) 0.610
8 —-19.149 (o) —19.657 (@) -17.863 (0) 1.794
9 -21.590 () —21.890 (%) —21.184 (n/2) 0.706
10 —23.045 (m) —22.109 (0) —21.947 (=) 0.162
11 —24.611 (0) —27.005 (0) —22.492 (m) 4.513
12 —37.922 () —39.292 () —36.681 (0) 2611
13 —44.420 (o) —45.173 (0) —44.230 () 0.943
Ro..un=275A
1 13.310 (o) 13.558 (0) 13.611 (%) 0.053
2 11.890 (o) 11.799 (m) 12.375 (0) 0.576
3 8.555 (o) 8.309 (0) 9.308 (m) 0.999
4 4.274 (%) 4473 (0) 4.505 (%) 0.032
5 1.224 (o) 1.271 (n) 1.552 (0) 0.281
6 —14.023 (n) —13.933 (n) —13.788 (0) 0.144
7 —14.819 (o) —14.742 (n) —14.237(0) 0.505
8 —19.149 (o) —19.626 (m) —18.064 (0) 1.562
9 —21.590 (o) —22.088 (n) —21.234 (n/4) 0.854
10 —23.045 (m) —22.107 (0) —21.983 (n/4) 0.124
11 —24.611 (o) —26.622 (0) —22.526 (m) 4.096
12 —37.922 (o) —39.070 (m) -36.877 (0) 2.193
13 —44.420 (o) —45.051 (0) —44.255 (n) 0.796

The criterium of self consistency used in the calculations was

Ipff,t”(ql, q,) — P}Bv(‘h: ) = 1073, ®)

where the upper index [ stands for the I-th iteration step. To fulfil this we needed
usually 18-20 iterations in the CNDO and 12—14 ones in the MINDO case.

To diagonalize the Hermitian complex matrix (2) of order 13 (the number of
valence orbitals in formamide) we have rewritten its eigenvalue equation (1) in the
usual way [18] into a real form. The eigenvalue problems have been solved with
the aid of a fast modified Givens program written by Neszmélyi [19].

Results

In Table 1 we present the CNDQ/2 and MINDO/2 band structures of an one-
dimensional polyformamide chain in which we have taken into account inter-
actions only through the hydrogen bonds (see Fig. 1). In the Table the first column
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polyformamide chain (interactions through hydrogen bonds, all energy values in eV)

MINDO/2
No. of band Eyo and type of level E in(ksas) E (kaas) 13
Ro..u-n=266A
1 4.569 (o) 5.079 (m) 5.115 (0) 0.036
2 3.877 (0) 4.649 (0) 4.681 (%) 0.032
3 2.506 (o) 2.785 (0) 2.906 () 0.121
4 0.389 (n) 0.509 (0) 0.526 (%) 0.017
5 — 1.312(0) — 1.186 (m) — 1.134(0) 0.054
6 —11.102 (n) —10.962 (n) —10.879 (0) 0.083
7 —11.496 (o) —11.065 (n) —10.919 (0) 0.144
8 —12.783 (o) —13.457 (m) —12.191 (0) 1.266
9 —14.525 (n) —14.535 (0) —14.464 (n) 0.069
10 —15.126 (o) —15.417 (n) —14.827 (0) 0.590
11 —17.632 (o) —19.535 (0) —16.191 (n) 3.344
12 —31.779 (o) —33.285 () —29.861 (0) 3.424
13 —38.725 (o) —43.356 (0) —-38.122 (n) 2234
Ro..u_n=2754
1 4.569 (o) 4.884 () 4933 (0) 0.048
2 3.877 (0) 4.614 (0) 4.652 (n) 0.038
3 2.506 (o) 2.753 (0) 2.876 (w) 0.122
4 0.389 (1) 0.500 (0) 0.514 (%) 0.012
5 — 1312 (o) — 1.194 (n) — 1150 (0) 0.043
6 —11.102 () ~10.965 () —10.903 (0) 0.062
7 —11.496 (o) —11.131 (n) —11.036 (0) 0.095
8 —12.783 (o) —13.392 () —12.211 (0) 1.183
9 —14.525 (n) —14.519 (0) —14.464 (r) 0.054
10 —15.126 (9) —15.449 (n) —14.834 (0) 0.612
11 —17.632 (o) —19.256 (0) —16.217 (n) 3.039
12 —31.779 (0) —33.087 (n) —30.094 (0) 2.993
13 —38.725 () —40.072 (0) —38.102 (m) 1.970

contains the corresponding molecular levels, the second and third one, respectively,
the lower and upper limits of the bands (their values k,a, are in parenthesis) and
finally the last column shows the widths of the bands. The left half of the Table
contains the CNDO, the right one the MINDO results. Further the data given in
the upper half of the Table refer to O---H—N hydrogen bond distance of 2.66 A,
while the lower one to 2.75 A.

In Table 2 we give the results obtained again for an one-dimensional poly-
formamide chain taking into account only interactions along the main chain now.
The quantities shown in Table 2 are the same as those in Table 1.

In Table 3 we show our CNDO/2 and MINDO/2 results obtained for the
two-dimensional polyformamide model system (see Fig. 1). Here ¢, and &,,,,
respectively, stand for the absolute lower edge and upper edge of the bands (the
values k;a, and k,a, belonging to them are again in parenthesis). The results
are given here only for the hydrogen bond distances of 2.66 A.

Table 4 summarizes the forbidden band widths between the valence and con-
duction bands for all the calculated model systems in both approximations.
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Table 2. The CNDO/2 and MINDO/2 band structures of a one-dimensional
No. of band CNDO/2

Eyo (type) Epin(kyay) Enax(kyay) 12
1 13.310 (o) 13.630 (0) 15.170 (x) 1.540
2 11.890 (o) 11.924 (n/4) 12.686 (x) 0.762
3 8.555 (o) 7.412 (0) 9.934 (n) 2.522
4 4274 (m) 3.694 (n) 6.953 (0) 3.259} 359
5 1.224 (o) 5.572(0) 6.177 (n/2) 0.605 :
6 —14.023 (n) —15.516 () —12.922 (n/4) 2.594} it
7 —14.819 (o) —15.868 (n) —11.657 (0) 4211 ’
8 ~19.149 (o) —18.520 (0) —16.205 () 231
9 —21.590 (o) —25.241 (0) —18.796 (n) 7.045 17.476
10 —23.045 () —28.479 () — 16417 (0) 12062( 17
1 —24.611 (0) —33.681 (n/4) —25.350 () 8331
12 —37.922 (o) — 43307 (0) —37.135 (3n/4) 6.172
13 —44.420 () —53.619(0) —43.890 (n) 9.729

Table 3. The CNDO/2 and MINDO/2 band structures of the two-dimensional
No. of band CNDO/2

Eyo (type) Eninlkiar, kaaz) Eaxlkyay, kpa,) oF
1 13.310 (0) 13.790 (0, — =) 15.473 (=, 0) 1.683
2 11.890 (o) 11903 (0, — =) 12.774 (=, 0) 0.871
3 8.555 (o) 7.429 (0, 0) 10.126 (n, —7) 2.697
4 4.274 (x) 3.441 (n, ~m) 5.997 (n/2, n/2) 2.556
5 1.224 (@) 6.357 (n, —m/2) 7.143(0, —n) 0.785
6 —14.023 (n) —15.308 (=, —7) —12.703 (0, 0) 2.605
7 —14.819 (o) —14.753 (r, n) —11.107 (0, —m) 3.646
8 —19.149 (o) —17.705 (/2, =/2) —13.841 (0,0) 3.864 22,433
9 —21.590 (o) —23.857 (=/2,0) ~17.581 (0,0) 6.276 7
10 —23.045 (m) —27.608 (0, 0) —22.465 (0, —m) 5.143
11 —24.611 (o) —33.540 (n, —m) —26.190 (n/2, 7) 7.350
12 —37.922 (o) —44.960 (0, —m) —38.339 (%, 0) 6‘621} 15.534
13 —44.420 (o) —53.873(0,0) —43.490 (7, ) 10.383§ 7

Table 4. The forbidden band widths between the valence and conduction bands of the different poly-
formamide systems (R stands for the O..-H—N distance, energies are in eV)

CNDO/2 MINDOQ/2
H-bonded one-dimensional chain R=266A 15.00 9.69
R=275A 15.06 9.75
One-dimensional main chain 16.62 9.20
Two-dimensional network R=266A 14.52 8.83

Discussion

As we can see from Tables 1-3 we have always three n bands corresponding
to the three 7 molecular levels and ten ¢ ones. The bands lie in all cases sym-
metrical with respect to the molecular levels with the exception of the conduction



Period Protein Models. 1 33

polyformamide chain (interactions along the main chain, all energy values in V)

No. of band MINDO/2

EMO (type) Emin(kl al) Emax(kl al) OE
1 4.569 (o) 4957 (0) 5.232 (m) 0.265
2 3.877 (o) 2.930 (0) 3.964 (m) 1.034
3 2.506 (o) 2.216 (0) 2.912 (m) 0.696
4 0.389 (%) 0.228 (%) 1.360 (0) 1.132} 2465
5 — 1.312(0) - 0.231(0) 2.214 (m) 2465) ~
6 —11.102 (n) —12.010 () —11.125 (0) 0.885
7 —11.496 (o) —12.364 (n) — 9.427 (0) 2937
8 —12.783 (o) —12.732 (3n/4) —12.163 (n/4) 0.519 10.108
9 —14.525 () —16.811 (0) —12.438 () 43731
10 —15.126 (o) —17.240 (r) —12.789 (0) 4.451
11 —17.632 (o) —19.535 (0) —16.191 (m) 3.344
12 —31.779 (o) —33.285 (n) —29.861 (0) 3.424
13 —38.725 (0) —43.356 (0) —38.122 (m) 2.234
polyformamide network (all energy values in eV, Rq...y_y = 2.66 A)
No. of band MINDO/2
Eyo (type) Epin(k1 0y, kaa5) Enax(ky 0y, kpa5) SE
1 4.569 (o) 5.940 (0, 0) 6.143 (7, 0) 0.203
2 3.877 (o) 3.155(0,0) 4.748 (v, —m) 1.593
3 2.506 (o) 3.007 (0, —=/2) 3.591 (=, —m) 0.584
4 0.389 (m) 1.606 (0, 0) 2.522 (x, 0) 0916
5 — 1.312(0) — 0.288 (0, 0) 1.327 (n/2, 7/2) 1.615
6 —11.102 () —11.096 (%, —7) - 9117 (0, —m) 1.979
7 —11.496 (o) —11.750 (z, 0) —11.019 (=/2, 7/2) 0.731 5802
8 —12.783 (o) —13.235 (=/2, m) —11.081 (0,0 2154 &
9 —14.525 () —14.939 (n/2,0) . —12.092(0,0) 2.847
10 —15.126 () —16.961 (=, 7) —16.114 (n/2, m) 0.847} 56l
11 —17.632 (o) —21.725 (n, —m) —16.373 (0, —7) 5.352§ &
12 —31.779 (o) —37.676 (0, —m) —30973 (7, —m) 6.703} 16761
13 —38.725 (o) —47.734 (0, 0) —-34.157 (0, —m) 13.577( *~

band in the case of the one-dimensional formamide chain (interactions along the
main chain) and of the two-dimensional polyformamide network (see Tables 2
and 3).

In that one-dimensional polyformamide chain in which we have the inter-
actions through the hydrogen bonds the ¢ bands are considerably broader than
the 7 ones (see Table 1), while in the calculated two other model systems the widths
of the two types of bands are about the same (see Tables 2 and 3).

The filled ¢ bands are rather broad already in the first model system (Table 1),
and all filled bands and some of the empty ones are quite broad (widths of several
eV’s, in some cases over 10 eV) in the second and third model systems (Tables 2
and 3).

In connection with the obtained very broad ¢ bands it should be mentioned
that this situation which was found also in other calculations [10, 11] contradicts

3 Theoret. chim. Acta (Berl.) Vol. 28
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to the usual picture of localized ¢ bonds. One could assume that this is the con-
sequence of the different approximations applied in the CNDO/2 and MINDO/2
method, respectively. On the other hand André [20] has obtained similarly broad
o bands in his ab initio calculation of a polyene chain. Mathematically it is possible
to find such a unitary transformation of the many-electron wave function of a
periodic system which would produce localized o electron wave functions (as it is
usually done in the course of ab initio molecular calculations). Such a trans-
formation would of course leave unchanged the total energy of the system, but
the one-electron description would not be possible any longer.

Returning to the details of the band structures we can see from the Tables
that while by the first model system we do not have overlapping bands, by the
second and third model systems many of the filled bands (including the valence
band) and the two lowest unfilled bands overlap in both approximations. In this
way we obtain in some cases allowed regions of 10—22 eV widths (indicated by
braces in Tables 2 and 3).

In all cases the highest filled molecular levels are n levels and the lowest unfilled
ones o levels. We can find the corresponding = and ¢ bands in the band structures
though in the second and third models they overlap with other bands. In this way
their widths become rather large in these systems (values between ~2.5¢V, and
~22¢eV). On the other hand in the first model system the widths of the valence
and conduction bands are between ~0.3 ¢V and 0.05 eV, respectively. It should be
further noted that the conduction bands are positive in all models in the CNDOQ/2
approximation and their upper limits are positive in the second and third model
systems also in the MINDO/2 approximation. Therefore the physical meaning
of the virtual bands which fell into the ionization continuum is questionable.

The forbidden band widths between the valence and conduction bands are

~15.0eV by all the three models in the CNDO/2 approximation and they are
between 9.2-9.7 eV by the three different model systems in the MINDO/2 approxi-
mation (see Table 4).

In the case of the first model system (one-dimensional chain with interactions
through the hydrogen bonds) we have used three different hydrogen bond distances,
2.66 A, 2.75 A, and 2.96 A, respectively. As we can see from Table 1 increasing the
distance from 2.66—2.75 A causes only a slight decrease in the band widths. On the
other hand increasing the hydrogen bond distance to 2.96 A we have obtained
generally a decrease of the band widths by a factor of two. For proteins the 2.66
and 2.75 A distances are the usual ones. Since the change of the hydrogen bond
distance from 2.66—2.75 A did not change significantly the band structure, we
have performed the calculation for the two-dimensional polyformamide network
only by 2.66 A.

By calculating the total electronic energy of a single formamide molecule and
that of the two-dimensional periodic system we have found a delocalization
energy per unit cell of ~25¢eV in the CNDO/2 and of ~22¢V in the MINDO/2
approximation, respectively.

In the approximation of the electronic structure of periodic protein models as
next step we intend to calculate the band structure of a simplified two-dimensional
polyglycine model in which we shall not take into account the proper valence
angles. In this way it will be enough to put one glycine molecule in the unit cell.
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